Rising Fast, Prone to Risk: How Open-Source
LLM-Powered Apps Are Designed and Secured

Julia Gomez-Rangel
Department of Computer Science
Texas A&M University-Corpus Christi
Corpus Christi, USA
jgomezrangel @islander.tamucc.edu

Kadir Alpaslan Demir
Department of Computer Science
Texas A&M University-Corpus Christi
Corpus Christi, USA
kadiralpaslan.demir@tamucc.edu

Abstract—The rapid rise of large language models (LLMs)
has driven their widespread adoption, especially as the core
component of open-source applications, which we refer to as
LLM-Powered Apps (LPAs). Despite the rapid growth of this
ecosystem, little is known about how these applications are
built in the open-source world, especially in terms of their
architectural and design decisions, deployment strategies, and
security practices, which remain poorly understood.

In this paper, we conduct a comprehensive empirical study of
89 popular open-source LPAs on GitHub, with the goal of charac-
terizing their design choices and identifying common security and
safety concerns. We systematically collect a set of architectural
and operational attributes, classify each LPA by its primary
purpose and analyze how functionality influences architectural
and security design. Our findings reveal dominant design patterns
as well as recurring risks, such as inadequate access control,
lack of telemetry transparency, and design assumptions that
break down in complex runtime environment. By surfacing these
trends and vulnerabilities, our study provides a foundational
understanding of how LPAs are currently built and deployed
in the open-source ecosystem. The results offer practical insights
for developers, researchers, and platform maintainers seeking to
build more robust and secure LLM-integrated software systems.

Index Terms—LILM-Powered App, Architectural Decision, De-
sign Decision, Security and Safety Concern

I. INTRODUCTION

The integration of large language models (LLMs) into
software as the core component that enables the primary
functionality has become increasingly popular [1]. We call
such applications LLM-Powered Apps (LPAs). This trend has
given rise to enormous projects on open-source platforms [2]-
[4] (e.g., GitHub), where developers collaborate and share
code to leverage and explore the potential of LLMs in a wide
range of domains, from clinical decision support [5], [6] to
code generation [7], [8].

As the trend continues, substantial research efforts have
been devoted to understanding, identifying and addressing

Alvaro Vazquez
Department of Computer Science
Texas A&M University-Corpus Christi
Corpus Christi, USA
avazquezl6@islander.tamucc.edu

Young Lee
Department of Computational,
Engineering and Mathematical Sciences
Texas A&M University-San Antonio
San Antonio, USA
ylee @tamusa.edu

Bozhen Liu
Department of Computer Science
Texas A&M University-Corpus Christi
Corpus Christi, USA
bozhen.liu@tamucc.edu

challenges introduced by LLM and its integration. One key
focus is to detect and prevent security and safety issues
introduced by adopting LLMs into software [9]-[13]. An-
other primary direction is to understand the difficulties and
challenges of developing LLM-integrated software [14], [15],
where several empirical studies and surveys have been con-
ducted on questions posted by developers on Stack Over-
flow [15], OpenAl developer forum [14], [15], or collected
through interviews with developers [16]. Although their in-
sights provides valuable perspectives on user confusion and
high-level development difficulties, they often overlook the
concrete, real-world issues that arise during the design and
development of open-source LPAs. Moreover, a systematic
understanding of how LLMs are architected into real-world
applications, especially in the open-source ecosystem, remains
limited. Specifically, little is known about the architectural
and design decisions, deployment strategies, and security or
privacy considerations in these LPA implementations. This
lack of visibility limits our ability to assess the robustness,
secure and safe deployability of such systems in practice.

To address this gap, we conduct a comprehensive empirical
study of popular open-source LPAs, focusing on projects
with over 1,000 GitHub stars. Our goal is to characterize
their architectural and design choices and uncover common
patterns, trends, and potential risks. We collect a diverse set
of technical and operational attributes, including program-
ming languages, LLM access modes (e.g., remote vs. local),
deployment environments, authentication and access control
mechanisms, caching and logging strategies, and user-facing
features such as file input. These attributes are selected to
reflect key dimensions of software architecture [17]-[19], e.g.,
component choice, system interaction, deployment context,
and cross-cutting concerns, as well as their implications for
security and safety.

Our study reveals several notable findings. First, we iden-

tify dominant architectural trends in LPA design, including
common technology stacks, model integration methods, and
platform choices. Second, and more critically, we observe a
range of recurring security and safety risks in open-source
LPAs, such as the absence or ineffective implementation of
access control, poor handling of user inputs and logs, and
assumptions that break down when LPAs are deployed in
complex environments (e.g., cloud). These issues highlight a
security gap between design and deployment, suggesting that
many LPAs may not be ready for use in production or multi-
user contexts without significant hardening.

By providing the first architectural and security-focused
analysis of open-source LPAs at scale, our study aims to
inform developers, researchers, and platform providers about
current practices and common pitfalls. The results not only
serve as a snapshot of the state of LPA development, but also
as a foundation for future tools, guidelines, and frameworks
to support more robust, secure, and trustworthy LLM-powered
software. The dataset, results, and source code required to
reproduce our study findings are publicly available [20].

II. DEFINITION AND RELATED WORK
A. Definition of LPAs

The term “LLM-integrated application” (a.k.a., “LLM-
integrated system” and “LLM-based application”) has been
used in previous research [21]-[24] to describe software sys-
tems where LLMs are incorporated as an auxiliary component
or enhancement. These applications often leverage LLMs for
certain tasks within broader systems that could still function
without them [25], [26]. This study focuses on a different
category formed recently: LLM-Powered Applications (LPAs),
which represents a new class of applications that emerged as
LLMs became more advanced, accessible and practical for
everyday use. We define an LPA as an application in which
the LLM acts as the central component, directly enabling the
application’s primary functionality. In LPAs, the system logic,
user interaction, or service output fundamentally depends
on the LLM. Without the LLM, the application becomes
functionally ineffective or entirely non-operational.

B. Studies on LLM-Integrated Software

As LLMs have been largely integrated into software, numer-
ous research efforts focus on the security risks that arise from
this trend. Sallou et al. [9] highlighted threats to the validity
of LLM-based research and propose guidelines for software
engineering researchers and LLM providers. Priyanshu et
al. [27] discovered that ChatGPT retains a large portion of
personally identifiable information during inference, exposing
concerns about privacy-related policies in LLMs. Yao et
al. [28] and Jin et al. [29] conducted literature reviews on
LLMs, identifying that LLMs pose risks for user-level attacks
due to their advanced reasoning abilities.

Researchers also investigate how software developers use
LLMs to improve their efficiency. Tufano et al. [30] catego-
rized the types of tasks that are automated via ChatGPT by
developers, which provides the insights about common usage

scenarios of LLMs in software development. Chouchen et
al. [31] presented a taxonomy to categorize the various topics
that developers discuss with ChatGPT in order to understand
and improve the interaction between developers and LLMs.
Moreover, with the evolution of LLMs, many studies have
been conducted to explore the challenges and difficulties in
developing LLM-integrated systems. Zhao et al. [32] analyzed
the current landscape of LLM from app stores and provided fu-
ture research directions to foster innovation and collaboration
among stakeholders. Weber [21] investigated the use of LLMs
as software components and classified how LLMs are inte-
grated into software applications. Yang et al. [33] investigated
GitHub issues from open-source Al repositories to understand
developers’ problems while employing Al systems. Similarly,
Chen et al. [14] conducted an empirical study by analyzing
questions posted by LLM developers on OpenAl developer
forum [34] and developed a taxonomy of the challenges they
faced. Nahar et al. [16] identified challenges in developing and
evaluating LPAs through interviews with software developers
from industry and propose potential solutions to improve
software quality. Abeysinghe and Circi [35] also addressed the
difficulties in evaluating LPAs. To complement existing work
in this area, we investigate open-source LPAs to explore the
landscape of LPA as well as observed and potential security
and safety issues omitted by open-source LPA developers.

III. METHODOLOGY AND STUDY DESIGN
A. Research Questions

To understand the architectural and design decisions, secu-
rity and safety considerations of open-source LPAs, our study
aims to answer the following research questions (RQs):

* RQOI What are the dominant architectural and design
decisions in popular open-source LPAs? This question
investigates architectural and design decisions such as pro-
gramming language, platform support, LLM access mode
(remote vs. local), deployment environment (cloud/on-
premises), and presence of caching or logging mechanisms.
These attributes reflect the underlying structure and runtime
behavior of LPAs.

* RQ2 How are user access and security handled in open-
source LPAs? We examine the use of authentication mech-
anisms, access control policies (e.g., role-based), personal
file upload handling, and logging of user interactions.
These features reveal how LPAs handle potentially sensitive
inputs and outputs and enforce trust boundaries.

* RQ3 What purposes do open-source LPAs serve, and
how do their purposes correlate with architectural and
security design choices? By categorizing LPAs by their
primary function, we explore whether the intended use case
influences architectural decisions or security posture, for
example, whether RAG tools more often support file up-
loads, or assistants rely on different authentication models.

B. Data Collection

To answer our RQs, we conducted a multi-phase data col-
lection process involving both automated and manual steps to

TABLE I

DATA ATTRIBUTES COLLECTED FOR EACH LPAS IN OUR STUDY.

RQ | Attribute | Description
Used LLMs & Access Mode Which LLM(s) are integrated into the LPA and whether they are accessed via a remote API or run locally.
Platform Support Which platform the LPA runs (e.g., web browser, desktop, cross-platform).
RQI Deployment Environment Where the LPA is deployed: on-premises, cloud or hybrid?
Caching Mechanism Whether the LPA uses caching (e.g., response caching, model output caching) to improve efficiency.
Logging Mechanism Whether the LPA logs outputs that contain user queries and answers from LLMs.
Primary Programming Language | The main language(s) (i.e., whose percentage is greater than 10%) used to implement the LPA .
User Access Model Who (or how many users) the LPA is designed for.
Authentication Mechanism Whether the app has login or authentication, and what kind (e.g., none, basic auth, OAuth) is adopted.
RQ2 | Access Control Policy Presence and enforcement of role-based or group-based access control.
Telemetry Whether the LPA logs or collects user interactions, queries, or outputs for analytics or other purposes.
Personal File Input Support Whether the LPA allows users to upload personal files for processing (e.g., PDF).
Information Retrieval Whether the LPA retrieves external documents or content that commonly associated with RAG systems.
Autonomous Task Execution Whether the LPA includes multi-step reasoning or autonomous workflows beyond single-turn prompts.
RQ3 Code-Related Functionality Whether the LPA is focused on supporting software development tasks (e.g., code generation, refactoring).
Structured Output Generation Whether the LPA automates the creation of documents with fixed structure or format (e.g., resumes).
Multi-LLM or API Abstraction Whether the application abstracts access to multiple LLMs or providers through a unified interface.
Productivity Support Features Whether the app includes note-taking, calendar integration, or personal workflow features.

ensure relevance, completeness, and quality. To collect the data
attributes required in our study, we chose GitHub as the target
platform because GitHub’s extensive ecosystem provides a
rich source of data, on which many existing studies [30], [33],
[36], [37] are conducted, making it an ideal platform for our
investigation on open-source LPAs.

1) Collection of LPA Repositories: We first identified can-
didate LPA repositories on GitHub using the search API [38]
that queries for projects using LLM-related keywords as
topics. The keywords contain “llm”, well-known LLMs (e.g.,
“chatgpt”) and their companies (e.g., “openai”), as well as
LLM-powered software (e.g., “chatgpt-app”). To focus on
influential applications, we included only repositories with
over 1,000 GitHub stars. In our search, we noted that many
repositories are tagged with multiple LLM-related keywords,
and we report each repository only once. This initial search
yielded 312 repositories.

Next, we applied a manual process to filter out repositories
that were not aligned with the scope of LPAs. The filtering
process was guided by our definition of LPAs. This refinement
excludes 122 repositories that include 22 infrastructure com-
ponents used to build, optimize and run LLMs, 20 tutorials,
19 curated lists of LLM-related techniques, 9 containing the
keyword but are irrelevant to the study, and 1 being purely
documentation. Another 52 repositories were excluded due
to non-English documentation. Finally, a dataset of 89 open-
source LPA repositories were selected for our study.

Note that our study includes only repositories with 1,000 or
more GitHub stars, ensuring visibility but potentially biasing
results by excluding newer or less-promoted projects.

2) Collection of Data Attributes: To answer our RQs, we
collected a set of descriptive attributes from each LPA reposi-
tory to capture their design and development features. Table I
summarizes the data attributes we collected for each LPA.
We extract these attributes through an automated scrapper of
repository documentation, configuration files and source code
with manual inspection. The collected data form the basis for

understanding the characteristics of LPAs in OSS ecosystem.

C. Data Analysis

To answer the RQs, we use a combination of quantitative
and qualitative methods on the data attributes shown in Ta-
ble I. We begin by identifying trends in the architectural and
design decisions of LPAs through frequency analysis of core
implementation attributes such as programming languages,
LLM access modes, deployment environments, and platform
support. We then examine security-relevant features, including
authentication mechanisms, access control policies, personal
file input support, and logging behaviors, to assess how these
applications handle user access and sensitive data. To explore
potential relationships between application purpose and design
choices, we compare the distributions of architectural and
security features across different categories of LPAs. Finally,
we conduct a qualitative review of patterns and edge cases that
reveal potential risks, such as security gaps between design
intent and actual enforcement, or issues that may arise when
LPAs are deployed in complex or shared environments like
cloud platforms. This approach allows us to extract both broad
trends and nuanced insights into the current state of open-
source LPA development.

IV. STUDY RESULTS

A. The dominant architectural and design decisions (RQ1)

Used LLMs & Access Mode The 89 LPAs support inte-
gration with 159 different LLMs ! in total. The four most
frequently supported models are OpenAI’s ChatGPT (71 out
of 89), Llama (56), Google’s Gemini (43) and Claude (40),
underscoring the wide adoption of OpenAl’s products. While
23 LPAs support only a single LLM integration, the majority
are designed for multi-LLM integration.

Our study reveals two main approaches to access LLMs:
through remote API services or LLM inference frameworks

IThis includes the LLMs explicitly listed in the LPA’s documentation.

UpSet Plot: Multi-Feature Overlaps

Count

Use local LLM

Set Size

Use remote LLM [—

——— Use local LLM

Use LLM's API

Use remote LLM

Use LLM's API

Share API key

Upload personal files

Share API key

Caching

Upload personal files

— Caching

Logging

Telemetry

Logging

Telemetry

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Intersection (ordered by size)

16 17

18 19 20 21 22 23 24 25 0 20 40 60 80
Count

Fig. 1. Overlaps in Architectural and Security Attributes

(LIFs) 2 for running LLM locally. Among the 89 LPAs, 79
(88.76%) rely on LLM API keys, reflecting the popularity
of API-based integration, especially for services built on top
of foundational LLM providers such as OpenAl. However,
only 55 of them explicitly encourage users to store their
keys as environment variables in their documentation (e.g.,
README). Of the 79 API-based LPAs, 4 are explicitly
designed for team use through shared API keys managed under
role-based access controls. For 12 others, it is unclear whether
keys are shared on their cloud service, as they are deployed
as closed-source platforms with proprietary API interfaces and
subscription models, making internal handling of keys opaque.

8 LPAs in our dataset only support local LLMs, while 46
support both local and remote access. Among the 54 LPAs
that enable local LLM integration, the most commonly used
LIF is Ollama (38), followed by llama.cpp (7), LLM Studio
(7) and LocalAl (4). The growing adoption of local inference
tools demonstrates their increasing practicality and appeal for
developers by offering greater controls and enhancing privacy
for end users. This highlights a trend among LPAs to support
hybrid access, allowing users to choose between cloud-based
APIs and local inference based on their privacy needs.

Platform Support The 89 LPAs in our study offer support
across 13 different platforms. MacOS and Windows are tied
as the most supported platforms (each supported by 32 LPAs),
followed by Linux with 29. All LPAs adopt cross-platform
design: 38 offer platform-specific downloads, and the most
common combination is MacOS, Windows and Linux (sup-
ported by 28). The rest LPAs use general installation (e.g.,
pip or go) or platform-independent way (e.g., Docker and

2Commonly used to run LLMs locally, such as Ollama and LM Studio.

web browsers) to achieve compatibility. Moreover, 10 LPAs
are also expanding to mobile platforms such as i0S, WatchOS
and Android, reflecting a new trend of adapting LPAs for
lower-powered computing environments.

Deployment Environment 86 out of the 89 LPAs support local
deployment to personal devices (e.g., PCs, smartphones or
private servers), commonly referred as “on-premises”. 5 LPAs
explicitly support deployment to cloud platforms such as AWS,
Google Cloud Platform and Azure, with 1 of them supporting
hybrid deployment. Moreover, 22 LPAs adopt Docker for
packaging, enabling LPAs originally designed for on-premises
deployment to be easily deployed to cloud with minimum
deployment overhead and compatibility issues.

Caching & Logging Mechanisms To enhance performance
and efficiency, 50 LPAs implement caching mechanisms (e.g.,
through .langchain.db, . json or Redis [39]), enabling
faster responses by reusing previous query results. Besides,
32 incorporate logging of user queries and/or LLM responses
for debugging and monitoring. Surprisingly, none of the LPAs
uses hardcoded paths to store cache files. This suggests the
awareness of potential data leak risks and a deliberate effort
to enhance security through careful handling of data storage.

Primary Programming Language TypeScript emerges as the
mostly used programming language, appearing in 42 out of
the 89 selected LPAs (47.19%). This highlights TypeScript’s
stronghold in building interactive web-based apps, favored for
its type safety and modern development features. Python, in
second place, is adopted by 30 LPAs, reflecting its widespread
adoption in Al-driven development. Among the 89 LPAs, 64
are written primarily in one programming language, with 90%
of the codebase excluding configuration files and front-end

TABLE 11
PURPOSE CATEGORIES OF LPAS IN OUR STUDY.

Category \ Associated Attribute(s)

| Example Use Cases | #LPAs (%)

Developer Tool

RAG Tool

Task Automation Agent
LLM Gateway
Autonomous RAG Agent
Productivity Assistant

Code-Related Functionality
Information Retrieval
Structured Output Generation
Multi-LLM or API Abstraction

Productivity Support Features

Information Retrieval, Autonomous Task Execution

25 (28.09%)
12 (13.48%)
10 (11.24%)

Al code assistants, copilot tools, scrapers
Document QA, chat over PDFs
Resume builders, job application generators

Middleware APIs for OpenAl, Claude 5 (5.62%)
Internet-answering Al agents 4 (4.49%)
Meeting assistants 2 (2.25%)

code (e.g., HTML and CSS). The remaining 25 LPAs are writ-
ten primarily in two or more programming languages, where
the most popular combination is Python and TypeScript (by
9 LPAs), indicating their pivotal role in creating user-friendly
interfaces and integrating LLM functionalities seamlessly.

B. User Access & Security (RQ2)

User Access Model We classified user access models into three
categories: (1) single-user mode, (2) multi-user mode, where
multiple users share resources via the cloud, and (3) team-
based mode, where resources are shared with role-based access
control. All 89 LPAs analyzed support single-user mode.
Among them, 52 support only single-user mode, 21 support
both single-user and multi-user modes, and 10 support all three
models. In total, 37 LPAs support multi-user mode (including 7
that provide publicly accessible demo websites), and 16 LPAs
support team-based mode. The increasing adoption of multi-
user and team-based access models as well as on-premises
deployment suggests that LPAs are evolving beyond personal
use cases toward collaborative environments and production-
level applications. This trend highlights a growing demand for
shared resources, streamlined deployment and proper access
control policies for resource-sharing LPAs.

Authentication Mechanism A wide range of authentication
methods are observed across our dataset. The most common
method is to use user’s personal LLM API keys, implemented
by 22 (24.72%) LPAs. Subscription-based authentication for
cloud services follows with 14 LPAs, 7 of which support
their own API keys. Other mechanisms include single sign-
on (SSO, by 4 LPAs) and the use of passwords (by 6 LPAs),
sometimes combined with alternative methods such as Magic
Links and Google OAuth. More secure methods such as two-
factor authentication (2FA) are less common, observed in only
one LPA, indicating that most LPAs still rely on simple and
less robust methods for authentication.

Notably, 5 LPAs using local LLMs and 15 LPAs supporting
both local and remote LLM access implement no form of
access control, which are designed for simple runtime envi-
ronment (e.g., personal devices). More importantly, 2 of these
applications support multi-user mode, which further amplifies
the potential security risks due to the lack of user isolation
and permission enforcement.

Access Control Policy Among the 15 LPAs that support
team-based mode, 9 adopt role-based access control [40]
(RBAC) and one adopts Lightweight Directory Access Pro-
tocol [41] (LDAP) for directory-based access control, in-

corporating password-based authentication. Besides, 5 LLM
development frameworks provide templates for implementing
RBAC in LPAs, underscoring its relevance in organizational
settings. This reflects developer’s effort to enable fine-grained
permission control, essential for collaborative environment.

Telemetry Telemetry plays a critical role for both developers
and users, however, which is only presented in 24 of our
dataset. For developers, telemetry provides insights into usage
patterns and system behavior, which are essential for perfor-
mance optimization. From user’s perspective, telemetry offers
transparency into the data being collected, enabling users to
evaluate the privacy practices of an LPA and decide whether
it aligns with their data sensitivity and usage preferences.

Personal File Input Support A total of 54 LPAs allow users
to upload personal files for processing by LLMs. For example,
RAG Web UI [42] accepts PDF, DOCX, MD and TXT.
This widespread support for personal file input highlights a
strong emphasis on user-specific context and customization,
suggesting that many LPAs are being designed not just for
general querying, but for deeply personalized workflows such
as document analysis, academic research, and domain-specific
retrieval-augmented generation.

C. Overall Attribute Overlaps

Figure 1 presents an UpSet diagram illustrating how key
architectural and security-related attributes co-occur across
the analyzed open-source LPAs. The left-bottom plot encodes
each intersection as filled dots (with a connecting vertical
line) indicating which attributes co-occur in that intersection
(ordered left-to-right by frequency). The top bar chart shows
the intersection sizes aligned to the bottom plot columns,
enabling immediate comparison of how common each specific
combination is. On the right-hand side, a horizontal bar chart
reports the marginal size for each individual attribute. These
three coordinated views summarize both overall prevalence
and the structure of co-occurrence patterns, highlighting which
attribute combinations are most common in the dataset.

D. Purposes of LPAs (RQ3)

To understand the functional diversity of open-source LPAs,
we classify each project in our dataset based on its primary
purpose and attributes shown in Table I. Table II presents
six purpose categories, together with how these categories
relate to the concrete attributes observed in the LPAs, ordered
by the number of projects observed. The most common
are Developer Tools, leveraging LLMs to assist in software

engineering tasks such as code generation or debugging. RAG
Tools use retrieval-augmented generation to provide document-
grounded responses, while Task Automation Agents employ
LLMs to generate structured outputs such as resumes or
job applications. We also identify more complex categories
such as Autonomous RAG Agents, which combine retrieval
with autonomous reasoning for multi-step task completion or
research, and LLM Gateways, which offer a unified access
layer to multiple model providers. Finally, Productivity Assis-
tants focus on enhancing daily workflows like note-taking and
calendar planning through LLM integration.

By categorizing LPAs in this way, we enable a comparative
analysis of how an LPA’s purpose may shape its architectural
and security design choices, discussed in Section VI-A.

V. SECURITY & SAFETY ISSUES IN LPAS

While analyzing the open-source LPAs, we identified a
range of recurring security and safety issues that stem from
two aspects, software architecture and access controls.

A. Software Architecture

Migrate to Complex Runtime Environment All LPAs in our
study are primarily designed for single-user mode on personal
devices, such as smartphones and personal computers, with
relatively simple runtime environment. However, installing and
deploying these apps in complex runtime environments (e.g.,
Google Cloud or AWS), where resources are shared among
multiple users, can expose security flaws if the default app
configurations do not support such complex environment. Such
a migration can introduce significant security challenges that
are notoriously difficult to test and debug due to the complexity
of cloud systems.

One example is ChuanhuChatGPT [43], which uses
config. json to store API keys and follows the best prac-
tices. However, the app is designed for multi-user mode with
their chat histories stored locally [44], which makes it possible
to locate other users’ chat histories and manually see other
user’s conversations if the app is installed on a server shared
by multiple users.

Alternative Ways for Using LLMs In addition to REST
APIs and LIFs, we observe a third approach to utilizing
LLM services: wrapping websites as desktop applications. For
example, ChatGPT Desktop Application [45] repackages the
ChatGPT website into a desktop app using Microsoft Edge
WebView?2 [46], requiring users to log in via the official Chat-
GPT web portal. Similarly, Pake [47] functions as a general-
purpose wrapper for various websites—including Twitter,
YouTube, and ChatGPT—transforming them into native-like
desktop experiences. Another example, Chat Al Desktop [48],
wraps the ChatGPT website but also offers support for API-
based access, blending web and programmatic interactions.
The potential security issues lie in the third-party compo-
nents used by developing an app [49], which can make calls to
security-sensitive APIs. In our study, this refers to Microsoft
Edge WebView?2 for the above mentioned repositories, posing
potential security risks. Microsoft Edge WebView2 has been

associated with numerous security vulnerabilities, as docu-
mented in the Microsoft Release Notes [50], with many of
them being exploits observed in real-world scenarios when us-
ing Chromium-based Microsoft Edge. Developers must remain
vigilant in monitoring and addressing these vulnerabilities to
ensure the overall security of their apps. Meanwhile, they
should regularly update their dependencies to mitigate the risk
of exploitation and incorporate robust security measures into
their development practices.

B. Access Control Issues

Access Control Policy In our study, 4 LPAs are designed to
share ChatGPT resources in order to reduce usage costs. One
example is the TypeScript implementation of GPT4Free [51].
However, the remaining three LPAs either lack adequate access
control or implement potentially invasive policies, raising
serious privacy and security concerns.

ChatGPT Web Share [52] shares a single ChatGPT Plus ac-
count with multiple users, and implements a simple RBAC to
manage users [53]. However, the administrators can view the
conversation history that users are using and have deleted [54].
Allowing administrators of an app to view conversation history
that users have deleted raises significant safety and privacy
concerns, including violations of user trust, exposure of sen-
sitive information, and risks of unauthorized access. This
practice can lead to potential data breaches, internal misuse,
and legal issues due to non-compliance with data protection
regulations like GDPR [55]. Meanwhile, it raises ethical
concerns by undermining user autonomy and transparency, as
users expect their deleted data to be permanently removed
and not accessible by administrators. The same condition also
applies to Chat2DB [56] and AWS GenAl LLM Chatbot [57].
These LPAs have insufficient access control policies, which
can result in vulnerabilities such as conflicted authentication,
permission escalation and RBAC failures. This highlights
the importance of correctly designing and thoroughly testing
access control policies and configurations to prevent security
flaws and ensure that user permissions are managed effectively.

Cache and Log In our study, 82 out of 89 repositories have
their own caching and/or logging mechanisms to remember
queries and prompts for faster performance or debugging. Sur-
prisingly, some of these apps have no authentication methods
at all, which highlights a critical gap in security practices.
As we mentioned previously, all the LPAs in our study
are designed for single-user scenario, which assumes that
the runtime environment is safe and only the assigned user
can use this app. This assumption makes the app design
lack proper authentication and authorization, especially for
those apps that use third-party caches and logs. For example,
ChatGPT Web Share uses MongoDB [58] to store users’
conversations, however, the MongoDB connection string
mongodb://cws:password@mongo:27017 is stored at
backend/config_templates/config.yaml. There
is no environment variables used for cws and password,
which means they will be hard-coded into the string. This
configuration makes users’ information unsafe, because (1)

including the credentials directly in the connection string
exposes them in plain text, which can be vulnerable if the
connection string is logged, stored in source code, or shared;
(2) the credentials are hard-coded in the app’s configuration
file, which can lead to accidental exposure, especially when
the repository is public with hundreds of forks; (3) the
connection string uses the mongodb protocol, which does
not enforce encryption, meaning data transmitted between the
client and the server is not encrypted, making it vulnerable
to interception and man-in-the-middle attacks.

This concern also applies to standalone apps that are self-
contained with an LLM, which could become more prevalent
as compilers and runtimes evolve to be more powerful for sup-
porting ML techniques. Developers must prepare for the future
to prevent potential security issues arising from increasingly
complex app architectures using third-party libraries.

Telemetry Only 24 LPAs in our study (27.27%) have explicit
telemetry statements, indicating that they log user interactions,
queries, or model outputs. In many cases, these statements are
limited to brief mentions in documentation or README files,
without specifying the scope, retention policy, or handling of
logged data. The remaining applications either do not log user
activity or do not disclose whether logging occurs—raising
concerns about transparency and potential data misuse. Among
those that do implement telemetry, few offer users meaningful
control over logging behavior (e.g., opt-out options), and even
fewer provide detailed disclosures about how logs are used
(e.g., for analytics, debugging, or model improvement). Given
that LLMs often process sensitive or personal information,
the lack of clear and consistent telemetry practices may pose
privacy risks, especially when LPAs are deployed in shared or
multi-user environments. This highlights a broader issue: many
open-source LPAs operate without strong data governance
mechanisms, despite their potential to collect or expose user-
generated content.

VI. DISCUSSION
A. How Purpose Shapes Architecture and Security?

Our analysis shows that an LPA’s functional purpose signif-
icantly shapes its architectural and security-related decisions.
Among Developer Tools, over 85% support both local and
remote LLMs, and nearly all require an API key for LLM
access. However, only a minority (less than 20%) implement
any access control mechanism such as RBAC or password lo-
gin, even when offering cloud deployment. Caching is widely
adopted in this category (e.g., 75%), likely for performance
optimization in iterative code generation or chat tasks. Devel-
oper tools also lead in telemetry support, with 9 out of 25
projects explicitly documenting telemetry collection—though
opt-out controls are still rare.

In contrast, Autonomous RAG Agents present a more mixed
picture. All agents in this category operate remotely or in
hybrid modes, and 100% support personal file uploads to
augment LLM reasoning. However, none of them implement
caching for performance, which may limit efficiency in multi-
step pipelines. Only one project enforces access control using

OAuth method, despite the fact that at least two support multi-
user configurations. These gaps indicate a substantial security
risk, especially when these agents are deployed beyond per-
sonal devices.

RAG Tools typically function as document-aware assistants.
These applications are more likely than others to include
document upload support (75%) and developer-facing APIs
(nearly 50%). Around half implement caching, and logging
is fairly common, but access control is rarely enforced, even
when cloud deployment is supported. Only a few tools offer
explicit telemetry or permission management disclosures.

For other categories, we observe consistent reliance on
remote LLMs and frequent exposure of REST APIs. While
all applications in this category require API keys, shared keys
are common, and robust user-level authentication or isolation
is largely absent. Logging is minimal, and telemetry is rare,
with only one interfaces disclosing data collection practices.

Across all categories, telemetry remains uncommon, with
only 15% of LPAs providing explicit telemetry statements.
Caching is prevalent in developer-oriented apps but nearly
absent in agent-style or assistant-style tools. Access control
mechanisms are implemented in fewer than 25% of projects
overall, despite a growing number of LPAs supporting multi-
user or cloud-based deployment.

These findings suggest that while the architectural complex-
ity of LPAs is increasing, driven by purpose-specific needs,
security and privacy practices are not keeping pace. Developers
often optimize for functionality and compatibility, but overlook
protections such as authentication, logging transparency, or
data governance. This raises concerns as open-source LPAs
become widely adopted in collaborative settings.

B. What new security requirements arise from evolving LPAs?

The trend of multi-user and cloud deployment in LPAs,
which always shares LLM resources, requires robust and
flexible access control mechanisms to support well-defined
permissions at user and/or resource level. The observed adop-
tion of access control policies (i.e., RBAC and LDAP) in our
dataset indicates a good start for developers to focus on user
data safety. This also suggests that while access control is
beginning to evolve, it still lags behind authentication in terms
of consistency and depth. The current landscape indicates that
most LPAs are still in the early stages of supporting shared
environments, but the adoption of RBAC and LDAP points to
a shift toward more mature, team-oriented usage models.

Meanwhile, LPAs often consist of components and modules
from third parties, which can create security gaps between dif-
ferent components, making the system vulnerable to malicious
exploits. For example, inconsistent access controls can allow
unauthorized users to gain access to other user’s data [59].
Ensuring a unified and comprehensive access control policy
is essential to mitigate these risks and to protect the integrity
and confidentiality of the system as a whole.

Sharing LLM resources to save costs often face challenges
due to undefined, insufficient or invasive access control poli-
cies. Properly designing and thoroughly testing access control

policies and configurations is crucial, especially for LPAs that
store and analyze users’ personal data, to prevent security
vulnerabilities and ensure effective permission management.
Additionally, caching and logging mechanisms in these apps
must be secured with appropriate authentication and autho-
rization to prevent data leaks and maintain data integrity.

C. What risks come with deploying LPAs to the cloud?

Most LPAs are designed for single-user mode with event-
driven architecture and minimum access controls, which have
limited adoption of threads or other complex architecture
designs. Hence, running these LPAs on personal devices seems
secure with no reported security issues. However, running
them in a complex runtime environment (e.g., cloud server
shared by multiple users) presents significant challenges that
demand careful redesigns. Otherwise, users on the same server
may be able to access each other’s files, resulting in data ex-
posure [60]. This also emphasizes the importance of designing
comprehensive access control mechanisms for LPAs.

The analysis includes only repositories with 1,000 or more
GitHub stars. While this ensures visibility, it likely excludes
newer or less-marketed projects that may have different archi-
tectural or security characteristics.

VII. CONCLUSION & FUTURE WORK

Our study sheds light on the architecture, design, and se-
curity aspects of LPAs. Our findings highlight the importance
of prioritizing security measures and good practices, both for
developers crafting LPAs and for users seeking to utilize LPAs.
Our work helps foster a more secure and resilient ecosystem
for LLM-powered software development.

First, based on the data collected in this study, we could
develop concrete guidelines and explore the role of the tech-
nologies used as well as the characteristics of open-source
development, while identifying best practices to create more
resilient and secure LLM-powered applications. Second, we
may create metrics for LPAs to evaluate the resilience and
security of these applications. Third, future work could incor-
porate statistical analyses, such as testing correlations between
app categories and security features or conducting regression
analyses, to move beyond frequency counts and distributions
and provide stronger evidence for relationships between app
characteristics and architectural choices. Based on these best
practices and metrics, we will be able to create frameworks,
architecture and design best practices for creating LPAs that
will contribute significantly to the LLM-powered application
ecosystem. We envision that these types of applications will
be a significant portion of software applications in the future.
Therefore, this study and other empirical and conceptual
studies will help build the foundation for a successful LLM-
powered application ecosystem.

ACKNOWLEDGMENT

This work was supported by the CAHSI-Google Institu-
tional Research Program; we express our sincere appreciation
for their support.

[1]
[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

“Here are 18,369 public repositories matching this topic llm -
github.com,” https://github.com/topics/llm, [Accessed 25-04-2025].

“shubhamsaboo/awesome-1lm-apps: Collection of awesome
LLM apps with AI Agents and RAG wusing OpenAl,
Anthropic, Gemini and opensource models. - github.com,”
https://github.com/Shubhamsaboo/awesome-llm-apps, [Accessed
03-04-2025].

“Hannibal046/Awesome-LLM: Awesome-LLM: a curated list of
Large Language Model - github.com,” https://github.com/Hannibal046/
Awesome-LLM, [Accessed 25-04-2025].

“Models - Hugging Face - huggingface.co,” https://huggingface.co/
models?other=LLM, [Accessed 25-05-2024].

P. Hager, F. Jungmann, R. Holland, K. Bhagat, I. Hubrecht, M. Knauer,
J. Vielhauer, M. Makowski, R. Braren, G. Kaissis, and D. Rueckert,
“Evaluation and mitigation of the limitations of large language models
in clinical decision-making,” Nature medicine, vol. 30, no. 9, pp. 2613—
2622, 2024.

B. Li, T. Meng, X. Shi, J. Zhai, and T. Ruan, “Meddm: Llm-executable
clinical guidance tree for clinical decision-making,” arXiv preprint
arXiv:2312.02441, 2023.

“Microsoft Copilot: Your everyday Al companion - copi-
lot.microsoft.com,” https://copilot.microsoft.com, [Accessed 04-06-
2024].

R. Chew, J. Bollenbacher, M. Wenger, J. Speer, and A. Kim, “Llm-
assisted content analysis: Using large language models to support
deductive coding,” arXiv preprint arXiv:2306.14924, 2023.

J. Sallou, T. Durieux, and A. Panichella, “Breaking the silence: the
threats of using llms in software engineering,” in Proceedings of the 2024
ACM/IEEE 44th International Conference on Software Engineering:
New Ideas and Emerging Results, 2024, pp. 102-106.

“From prompt injections to sql injection attacks: How protected is your
IIm-integrated web application?” 2023.

“Prompt injection attacks and defenses in llm-integrated applications,”
arXiv preprint arXiv:2310.12815, 2023.

“Scalable extraction of training data from (production) language mod-
els,” 2023.

“A new era in llm security: Exploring security concerns in real-world
IIm-based systems,” 2024.

X. Chen, C. Gao, C. Chen, G. Zhang, and Y. Liu, “An empirical
study on challenges for llm application developers,” ACM Trans.
Softw. Eng. Methodol., Jan. 2025, just Accepted. [Online]. Available:
https://doi.org/10.1145/3715007

K. Alam, K. Mittal, B. Roy, and C. Roy, “Developer challenges on large
language models: A study of stack overflow and openai developer forum
posts,” arXiv preprint arXiv:2411.10873, 2024.

N. Nahar, C. Kistner, J. Butler, C. Parnin, T. Zimmermann, and
C. Bird, “Beyond the comfort zone: Emerging solutions to overcome
challenges in integrating llms into software products,” 2024. [Online].
Available: https://arxiv.org/abs/2410.12071

L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012.

S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: A case study,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 2019, pp. 291-300.

D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden tech-
nical debt in machine learning systems,” Advances in neural information
processing systems, vol. 28, 2015.
“apace-lab/LLM-Powered-App_Study_AIxSE25: Replication package
for our AIXSE 2025 paper on open-source LLM-powered applications.
- github.com,” https://github.com/apace-lab/LLM-Powered- App_Study_
AIXSE25, [Accessed 15-08-2025].

I. Weber, “Large language models as software components: A
taxonomy for llm-integrated applications,” 2024. [Online]. Available:
https://arxiv.org/abs/2406.10300

J. Evertz, M. Chlosta, L. Schonherr, and T. Eisenhofer, “Whispers in
the machine: Confidentiality in llm-integrated systems,” 2024. [Online].
Available: https://arxiv.org/abs/2402.06922

“Prompt injection attack against llm-integrated applications,” 2024.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

O. Topsakal and T. C. Akinci, “Creating large language model appli-
cations utilizing langchain: A primer on developing llm apps fast,” in
International Conference on Applied Engineering and Natural Sciences,
vol. 1, no. 1, 2023, pp. 1050-1056.

“Tone Detector and Tone Suggestions — Grammarly - grammarly.com,”
https://www.grammarly.com/tone\#, [Accessed 25-04-2025].

Instacart, “Unlocking Efficiency: How Ava Be-
came Our Al Productivity Partner - instacart.com,”
https://www.instacart.com/company/how-its-made/
unlocking-efficiency-how-ava-became-our-ai-productivity-partner/,
[Accessed 25-04-2025].

A. Priyanshu, S. Vijay, A. Kumar, R. Naidu, and F. Mireshghallah,
“Are chatbots ready for privacy-sensitive applications? an investigation
into input regurgitation and prompt-induced sanitization,” arXiv preprint
arXiv:2305.15008, 2023.

Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A survey on
large language model (1lm) security and privacy: The good, the bad, and
the ugly,” High-Confidence Computing, p. 100211, 2024.

H. Jin, L. Huang, H. Cai, J. Yan, B. Li, and H. Chen, “From Ilms to Ilm-
based agents for software engineering: A survey of current, challenges
and future,” arXiv preprint arXiv:2408.02479, 2024.

R. Tufano, A. Mastropaolo, F. Pepe, O. Dabic, M. Di Penta, and
G. Bavota, “Unveiling chatgpt’s usage in open source projects:
A mining-based study,” in Proceedings of the 21st International
Conference on Mining Software Repositories, ser. MSR ’24. New
York, NY, USA: Association for Computing Machinery, 2024, p.
571-583. [Online]. Available: https://doi.org/10.1145/3643991.3644918
M. Chouchen, N. Bessghaier, M. Begoug, A. Ouni, E. Alomar, and
M. W. Mkaouer, “How do software developers use chatgpt? an ex-
ploratory study on github pull requests,” in Proceedings of the 21st
International Conference on Mining Software Repositories, 2024, pp.
212-216.

Y. Zhao, X. Hou, S. Wang, and H. Wang, “LIm app store analysis: A
vision and roadmap,” arXiv preprint arXiv:2404.12737, 2024.

Z. Yang, C. Wang, J. Shi, T. Hoang, P. Kochhar, Q. Lu, Z. Xing,
and D. Lo, “ What Do Users Ask in Open-Source Al Repositories?
An Empirical Study of GitHub Issues ,” in 2023 IEEE/ACM 20th
International Conference on Mining Software Repositories (MSR).
Los Alamitos, CA, USA: IEEE Computer Society, May 2023, pp.
79-91. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
MSR59073.2023.00024

“OpenAl Developer Community - community.openai.com,”
community.openai.com, [Accessed 07-04-2025].

B. Abeysinghe and R. Circi, “The challenges of evaluating 1llm
applications: An analysis of automated, human, and llm-based
approaches,” 2024. [Online]. Available: https://arxiv.org/abs/2406.03339
G. Kudrjavets, N. Nagappan, and A. Rastogi, “Do small code
changes merge faster? a multi-language empirical investigation,” in
Proceedings of the 19th International Conference on Mining Software
Repositories, ser. MSR ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 537-548. [Online]. Available:
https://doi.org/10.1145/3524842.3528448

K. A. Hasan, M. Macedo, Y. Tian, B. Adams, and S. Ding,
“Understanding the time to first response in github pull requests,”
2023. [Online]. Available: https://arxiv.org/abs/2304.08426

“REST API endpoints for search - GitHub Docs - docs.github.com,”
https://docs.github.com/en/rest/search/search?apiVersion=2022-11-28,
[Accessed 11-04-2025].

donna.bentley @redis.com, “Building LLM Applications with
Kernel Memory and Redis - Redis - redis.io,” https://redis.io/blog/
building-1Im-applications-with-kernel-memory-and-redis/, [Accessed
26-04-2025].

R. S. Sandhu, “Role-based access control,” in Advances in computers.
Elsevier, 1998, vol. 46, pp. 237-286.

K. Zeilenga, “Lightweight directory access protocol (ldap): Technical
specification road map,” https://www.rfc-editor.org/rfc/rfc4510, Tech.
Rep., 2006.

“rag-web-ui/rag-web-ui: RAG Web Ul is an intelligent dialogue sys-
tem based on RAG (Retrieval-Augmented Generation) technology. -
github.com,” https://github.com/rag-web-ui/rag-web-ui, [Accessed 03-
04-2025].

“GaiZhenbiao/ChuanhuChatGPT: GUI for ChatGPT API and many
LLMs. Supports agents, file-based QA, GPT finetuning and query

https://

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

[52]

[53]

[54]
[55]

[56]

(571

(58]

[59]

[60]

with web search. All with a neat UL” https://github.com/GaiZhenbiao/
ChuanhuChatGPT, [Accessed 12-04-2024].
“ChuanhuChatGPT/web_assets/javascript/chat-history.js at
8a2fd5681354fdbb2e2e9ee9fbb0aae8d600c453 GaiZhen-
biao/ChuanhuChatGPT - github.com,” https://github.com/GaiZhenbiao/
ChuanhuChatGPT/blob/main/web_assets/javascript/chat-history.js\
#1.14, [Accessed 31-05-2024].

“GitHub - lencx/ChatGPT: ChatGPT Desktop Application (Mac,
Windows and Linux),” https://github.com/lencx/ChatGPT?tab=
readme-ov-file, [Accessed 04-04-2024].

“Microsoft Edge WebView2 Microsoft Edge Developer -
developer.microsoft.com,” https://developer.microsoft.com/en-us/
microsoft-edge/webview2/?form=MA13LH, [Accessed 16-04-2024].
“GitHub - tw93/Pake: Turn any webpage into a desktop app with Rust.”
https://github.com/tw93/Pake, [Accessed 04-04-2024].
“sonnylazuardi/chat-ai-desktop: Unofficial ChatGPT desktop app for
Mac & Windows menubar using Tauri & Rust,” https://github.com/
sonnylazuardi/chat-ai-desktop, [Accessed 09-04-2024].

H. Plate, “State of dependency management
https://cdn.prod.website-files.com/6574c9e538a34feac8cec013/
65c1a778df2ea35e0edcefc4_State%200f%20Dependency %
20Management%202023.pdf, [Accessed 06-11-2024].

dan wesley, “Release notes for Microsoft Edge Security Updates
- learn.microsoft.com,” https://learn.microsoft.com/en-us/deployedge/
microsoft-edge-relnotes-security, [Accessed 07-06-2024].
“xtekky/gpt4free: The official gptdfree repository — various collection
of powerful language models - github.com,” https://github.com/xtekky/
gptéfree, [Accessed 29-05-2024].

“chatpire/chatgpt-web-share: ChatGPT Plus / OpenAl API sharing solu-
tion.” https://github.com/chatpire/chatgpt-web-share, [Accessed 04-04-
2024].

“chatgpt-web-share/frontend/src/router/guard at
29335d53256347352aade0a6ba849818943bbcel - chatpire/chatgpt-web-
share - github.com,” https://github.com/chatpire/chatgpt- web-share/tree/
29335d53256347352aade0a6ba849818943bbce1/frontend/src/router/
guard, [Accessed 15-07-2025].

“Home — ChatGPT Web Share Docs - cws-docs.pages.dev,” https://
cws-docs.pages.dev/en/, [Accessed 15-07-2025].

“General Data Protection Regulation (GDPR) — Legal Text - gdpr-
info.eu,” https://gdpr-info.eu, [Accessed 05-11-2024].
“CodePhiliaX/Chat2DB: Al-driven database tool and SQL client, The
hottest GUI client, supporting MySQL, Oracle, PostgreSQL, DB2, SQL
Server, DB2, SQLite, H2, ClickHouse, and more. - github.com,” https:
//github.com/CodePhiliaX/Chat2DB, [Accessed 15-07-2025].
“aws-samples/aws-genai-llm-chatbot: A modular and comprehensive so-
lution to deploy a Multi-LLM and Multi-RAG powered chatbot (Ama-
zon Bedrock, Anthropic, HuggingFace, OpenAl, Meta, AI21, Cohere,
Mistral) using AWS CDK on AWS - github.com,” https://github.com/
aws-samples/aws- genai-1lm-chatbot, [Accessed 15-07-2025].
“MongoDB: The Developer Data Platform - mongodb.com,” https:
/Iwww.mongodb.com, [Accessed 05-11-2024].
“vulnerability-disclosures/LibreChat/CVE-2024-41703.md at
main realestate-com-au/vulnerability-disclosures - github.com,”
https://github.com/realestate-com-au/vulnerability-disclosures/blob/
main/LibreChat/CVE-2024-41703.md, [Accessed 25-04-2025].
“vulnerability-disclosures/LibreChat/CVE-2024-41704.md at
main realestate-com-au/vulnerability-disclosures - github.com,”
https://github.com/realestate- com-au/vulnerability- disclosures/blob/
main/LibreChat/CVE-2024-41704.md, [Accessed 25-04-2025].

2023,

