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Abstract—The rapid rise of open-source applications and
frameworks powered by large language models (LLMs) has
introduced new and complex security risks. While recent studies
have explored prompt injection, model misuse, and runtime
vulnerabilities in isolated cases, the system-wide security risks of
this ecosystem remain underexamined. In this paper, we present
an empirical study of security advisories reported through
GitHub for popular LLM-Powered Applications (LPAs) and their
underlying Local Inference Frameworks (LIFs, such as llama.cpp
and vLLM), aiming to surface system-wide security risks across
the LLM software stack. We curate and analyze a dataset of 50
real-world vulnerabilities, classifying them by type, severity, and
root cause. Our analysis reveals different risk profiles: LPAs tend
to suffer from input-driven web vulnerabilities, while LIFs exhibit
memory safety and dependency-related issues. We also identify
common and unique characteristics of security vulnerabilities
in LPAs and LIFs when compared to traditional open-source
projects. Our findings highlight the urgent need for systematic
security practices, better disclosure mechanisms, and lifecycle-
aware defenses across the rapidly evolving LLM software stack.

Index Terms—LLM-Powered Application, Local Inference
Framework, GitHub Security Advisory, Open-Source Software
Development

I. INTRODUCTION

Large language models (LLMs) have transformed the land-
scape of software development, powering a new generation
of intelligent, language-aware applications [1]. These LLM-
Powered Applications (LPAs) span a wide range of use cases,
including autonomous agents [2], [3], [4], intelligent chat
interfaces [5], [6], and Al coding assistants [7], [8]. Their
widespread availability through open-source ecosystems and
their ease of customization have contributed to the rapid
evolution of LLM software stack widely adopted by both
researchers and practitioners [9], [10].

LPAs often access LLM services through remote APIs or
LLM Inference Frameworks (LIFs, e.g., 11ama.cpp) that
allow developers to run LLMs efficiently on local hardware.
These frameworks are increasingly integrated into LPAs, of-
fering enhanced control, privacy, and reduced latency as well

as increasing the complexity of open-source LLM-related
software [11], [12].

Despite the utility of LPAs and LIFs, their rapid prolifera-
tion has introduced new and under-explored security risks [13],
[14], [15]. LLMs inherently blur the boundary between data
and code, making them vulnerable to prompt injection [16],
code execution flaws [17], and insecure dependency use [18].
Several early works have examined vulnerabilities in LLM
ecosystems. For example, LLMSmith [19] uncovered over a
dozen remote code execution flaws in popular LLM-integrated
tools and assigned 13 CVEs. Other efforts have studied
LLM prompt injection [20], [21], adversarial prompting [22],
or lifecycle-level risks across datasets, models, and inter-
faces [23]. However, these works either focus on the LLM
model layer (e.g., model training [24], jailbreaks [25]) or on
earlier versions of LLM-integrated tools (released in 2023) that
have since evolved significantly. Given the accelerated release
cycle and community-driven growth of LLM ecosystems [26],
[1], prior studies can quickly become outdated. Moreover,
there is limited empirical analysis of vulnerabilities as reported
and tracked by the open-source community, e.g., through
platforms such as GitHub Security Advisories [27]. Mean-
while, no prior study has offered a side-by-side comparison
of LPAs and LIFs, or contrasted them with traditional open-
source projects, using real-world, developer-facing data such
as GitHub advisories and patch metadata, leaving system-level
security dynamics in the LLM ecosystem underexplored.

To address this gap, we present an empirical study of
GitHub-reported security issues in LPAs and LIFs, using the
most current and up-to-date data available. We construct a
curated dataset of 50 publicly disclosed vulnerabilities from
GitHub Security Advisories collected from the most popular
LPAs (>1k stars, actively maintained since 2023) and LIFs
(most widely adopted by popular LPAs), together with their
CVE links, and fix releases from project inceptions to June
2025. We analyze these issues across multiple dimensions,
including vulnerability types, time to fix, affected components,
and disclosure timelines. We also examine the factors con-



tributing to the persistence of long-lived and unpatched vul-
nerabilities observed in our study dataset, and how these chal-
lenges hinder timely remediation. Our analysis contributes:

1) A dataset of 50 real-world security vulnerabilities from
GitHub security advisories across popular open-source
LPAs and LIFs;

2) The first comparative analysis of LPAs and LIFs using
public vulnerability disclosures, highlighting differences
in vulnerability types, severity levels, and remediation
patterns;

3) The common and unique security characteristics of LPAs
and LIFs in comparison with traditional open-source
projects;

4) Recommendations for proactive security practices in the
LLM software ecosystem, including prioritization, testing,
and system-wide coordination;

5) The dataset, results, and source code required to reproduce
our findings are publicly available [28].

II. STUDY SCOPE AND RELATED WORK
A. LLM-Powered Applications

Previous research has used the term “LLM-integrated ap-
plication” to describe software systems where LLMs are em-
bedded as auxiliary components or enhancements [29], [30],
[21], [31]. This is also known as “LLM-integrated system”
and “LLM-based application”, where LLMs typically serve
specific sub-tasks within broader applications that remain
operational even in the absence of the LLM [32], [33].

Differently, this study focuses on a more recent category:
LLM-Powered Applications (LPAs), a group of software that
has emerged alongside the increasing maturity, accessibility,
and practical utility of LLMs. We define an LPA as an applica-
tion where the LLM is the core component that directly drives
its primary functionality. In such systems, user interactions,
application logic, or service outputs fundamentally rely on the
LLM. Without the LLLM, the application becomes largely non-
functional or entirely inoperative.

B. LLM Inference Frameworks

Our pervious study [34] discovers that 61% of popular
open-source LPAs support running LLMs locally through
LLM inference frameworks (LIFs), such as Ollama [35],
llama.cpp [36] and LocalAI [37]. Integrating LIFs into LPAs
has already became one major way to leverage LL.Ms, while
the other is through API service. The security issues in-
troduced by APIs [38], [39] can compromise LPAs when
user’s information is exchanged through APIs, which has been
addressed by extensive research [40], [41], [42], [43], [44] and
industry tools [45], [46], [47]. However, there is still a lack of
understanding regarding the security risks introduced by LIFs.

Moreover, adoption of LIFs by LPAs requires handling
substantial heterogeneous computational resources [48] (e.g.,
CPUs and GPUs), ensuring compatibility [49] and managing
complex dependencies for seamless integration [50]. More-
over, developers face unique issues such as model migration
issues [51], missing robust evaluation methods [52], [S1] and

addressing ethical concerns in the generated content [53].
However, we still have limited understanding of these in-
ference frameworks serving as the fundamental infrastructure
that enables LPAs to operate in offline and privacy-preserving
environments. Hence, including LIFs in our study is essential
for capturing the full landscape of LPA development.

C. Related Empirical Security Studies

Early Focus on RCE and Supply-Chain Risk. The first
systematic vulnerability excavation in this area was LLM-
Smith [19], which exposed over 20 vulnerabilities (including
19 Remote Code Execution issues) across 11 LLM-integrated
frameworks and tools, leading to 13 CVEs. More recently, a
survey study [23] explored supply-chain vulnerabilities in 75
LLM-related projects, analyzing security risks across 13 stages
of the LLM lifecycle, highlighting insecure model downloads,
unsafe deserialization and dependency issues.

Tool-Centric Audits but Little Ecosystem-Wide Data. Security
tool builders have rushed in with adapted static analyzers
(e.g., Bandit’s Python rulesets [54], Semgrep’s custom LLM
rules [55]) and purpose-built scanners (e.g., Protect AI’'s LLM
Guard [56]). OSV-Scanner [57], developed by Google, pro-
vides automated vulnerability detection based on the Open
Source Vulnerabilities database [58], and is increasingly used
to flag known issues in dependency chains. However, pub-
lished evaluations either target a single framework family (e.g.,
LangChain agents [59]) or use bespoke test harnesses divorced
from the public disclosure record.

What is Still Missing? Few prior works have focused on how
security vulnerabilities from real-world, open-source LPA and
LIF projects are reported, discussed, and patched over time at
the ecosystem level. Our study analyzes the security advisories
from both LPAs and the LIFs they depend on, and provides
the first side-by-side comparison of LPAs and LIFs, alongside
traditional open-source projects, using real-world, developer-
facing data. This makes this study both timely and necessary,
which helps developers design future LLM-related software in
a safe and secure way.

III. METHODOLOGY
A. Dataset Collection

We conducted a multi-phase data collection process of both
automated and manual steps to ensure relevance, coverage
and quality.

Collection of Popular LPAs and LIFs We first identified can-
didate LPA repositories on GitHub using the search API [72]
using LLM-related keywords as topics. We used the key-
words “llm”, well-known LLMs (e.g., “chatgpt”) and their
companies (e.g., “openai”), as well as LLM-powered software
(e.g., “chatgpt-app”) !. To focus on influential applications,
we included only repositories with over 1,000 GitHub stars.
We adopted a manual process to filter out these repositories
that were not aligned with the scope of LPAs as described

I'The full list of keywords can be found in our replica repository.



TABLE I: Statistics of LPAs and LIFs in Our Study.

TABLE II: Comparison of Estimated Time to Fix.

First Release #Vul(#Un-
Project #Stars/#Forks  (#Commits) patched)
LPAs
open-webui [60] 104k/14k 2024-02-22 (12,055) 3(0)
NextChat [61] 85.1k/61.1k 2023-03-21 (3,082) 1 (0)
lobe-chat [62] 63.8k/13.3k 2023-07-18 (5,716) 5 (0)
ragflow [63] 60.9k/6.1k 2024-04-15 (3,480) 2 (1)
anything-1lm [64] 47k/4.8k 2024-07-26 (1,500) 2(2)
firecrawl [65] 43.5k/4.1k 2024-09-05 (3,678) 1 (0)
khoj [66] 30.6k/1.7k 2022-08-15 (4,915) 4(0)
ChuanhuChatGPT [67] 15.4k/2.3k 2023-06-14 (1,258) 1 (0)
DocsGPT [68] 16.8k/1.7k 2023-03-03 (3,962) 1(0)
onyx [69] 13.2k/1.8k 2024-08-01 (4,190) 1(0)
LIFs
llama.cpp [36] 83.5k/12.5k 2023-03-18 (5,994) 9 (0)
vLLM [70] 53.2k/8.9k 2023-06-20 (7,910) 18 (1)
sagemaker-python-sdk [71] 2.2k/1.2k 2017-12-04 (4,235) 2 (0)

in Section II-A. To be specific, each author independently
reviewed project descriptions, README files, dependencies,
and in some cases the codebase or functionality. The indi-
vidual results were then consolidated through discussion to
reach consensus on a final curated list of 89 open-source
LPA repositories, ensuring our dataset accurately represents
true LPAs rather than other LLM-related applications (e.g.,
finetuning framework, vector database).

We observed that 54 of the 89 LPAs in our dataset support
running local LLMs. We applied the same manual process
described above to identify popular open-source LIFs that
are widely adopted by LPAs and show consistent contri-
butions from the open-source community, ranked by usage
in descending order: llama.cpp [36], VLLM [70] and
sagemaker-python-sdk [71].

Collection of GitHub Security Advisories For each selected
repository from the previous step, we extracted security-
related data from the GitHub Security tab, which includes
disclosed vulnerabilities, associated CVE IDs (or other iden-
tifiers when available), advisory summaries, severity ratings,
and linked pull requests or releases addressing the issues. We
supplemented this data with additional metadata such as issue
creation and fix timestamps and affected package versions
when disclosed. This concludes a set of 50 security advisories
in our dataset.

We applied the same keyword search on NVD [73], but the
result was less useful: most of the vulnerabilities overlapped
with those in our dataset, while the others are either from
close-source commercial projects, using non-English docu-
mentation, or addressing vulnerabilities from non-LPAs (e.g.,
development frameworks for AI). Hence, we excluded NVD
results from our study.

B. Data Processing

Each advisory in the dataset was manually verified and
annotated with metadata such as vulnerability type, severity
rating, project name, affected and patched version release
dates, and presence of CWE classifications. This enriched
dataset provides a detailed view into the real-world open-
source security landscape of actively maintained LLM tools
and systems.

#Un- Time to Fix (Days)
Type | #Patched Patched Avg. Median Min Max
LPA | 17 (5%) 3 234.12 41.00 0 819
LIF 29 (14%) 1 504.04 398.50 0 2340

*: the number of vulnerabilities with open-ended constraints.

For each vulnerability, we estimated the time between intro-
duction and patch using release version metadata. Based on ad-
visory content and commit-level inspection, we also recorded
and determined whether the root cause of the vulnerability lies
in the LLM itself, originates from a third-party dependency,
or arises from the application’s internal logic. This allowed us
to distinguish between first-party and third-party sources of
risk in our analysis [74]. The resulting dataset forms the basis
of our descriptive statistics, comparative analysis, and fix-time
measurements presented in the following sections.

IV. STUDY RESULTS
A. Our Study Dataset

Table I provides an overview of the open-source LPAs and
LIFs included in our analysis. For each project, we report
the numbers of stars and forks, the release date of the first
public version with the number of commits, the total number
of reported vulnerabilities from GitHub security advisory, and
how many of those remain unpatched at the time of writing.
Although we omit certain popularity metrics in the table, all
selected projects are actively maintained and widely used,
as indicated by their GitHub visibility (i.e., the numbers of
stars, forks and commits). This summary sets the stage for
our comparison analysis of vulnerability types, fix timelines,
and security patterns across the open-source LLM software
ecosystem.

Surprisingly, the majority of advisories (29 out of 50)
originated from LIF projects, surpassing the 21 observed in
LPAs. This finding contrasts with assumptions from previous
work [75] that most risks would cluster around user-facing or-
chestration logic, where user inputs are parsed, validated, and
routed to LLMs or downstream services. This also indicates a
broader attack surface and greater scrutiny of frameworks.

B. Comparing LPAs and LIFs

Time-to-Fix Existing works often use fix latency to quantify
responsiveness to vulnerabilities and difficulty of maintain-
ing a project [76], [77], [78]. Differently, we do not use
CVE/GHSA publication dates for temporal analysis due to
a systemic delay in disclosure: the published date is always
posterior to the actual patch. Instead, we estimate the time-
to-fix window using the interval between when a vulnerable
version was released (i.e., affected version’s release date) and
when the patched version became publicly available (i.e.,
patched version’s release date).

When an advisory described the affected versions using
open-ended constraints (e.g., <v1.1.0), and no narrower in-
troduction range was documented, we conservatively assumed
the vulnerability was present since the project’s first public
release. This aligns with prior work in open-source software
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Fig. 1: The Distribution of Affected Version’s Release Dates
from Our Dataset (Each Blue Dot Represents A Vulnerability).

(OSS) vulnerability analysis where exact introduction commits
are unavailable [79]. This method provides a meaningful
approximation of the exposure window, i.e., the time during
which users may have unknowingly run vulnerable software,
especially when disclosure metadata (e.g., CVE publication
dates) only reflect downstream reporting and not actual intro-
duction.

Table II presents a comparative summary of estimated
times to fix vulnerabilities in LPAs and LIFs, highlighting
differences in remediation speed, range of delays, and the
number of advisories analyzed per category. We noticed one
outlier showed a negative fix window from an LPA (i.e., -107
days from onyx) in our dataset and excluded it from this
comparison. This outlier is probably due to inconsistencies in
version tagging or backdated release metadata, highlighting the
challenges in timely and formally documenting open-source
software development and vulnerability report.

These results indicate that both LPAs and LIFs suffer from
significant delays in patching introduced vulnerabilities, with
LIFs showing longer average exposure windows due to the
complexity of patching native code and tighter integration
with system-level components. Although LPAs are often faster
to patch (2X on average), they still exhibit long delays and
metadata inconsistencies that complicate security lifecycle
tracking. These findings suggest that vulnerability persistence
is a systemic concern and mitigation will require structural
improvements across both application- and framework-level
development practices.

To understand whether security incidents are growing over
time, we analyzed vulnerability introduction dates based on
the release of affected versions. As shown in Figure 1, the
data show a marked increase in issues from 2023 to present,
with 22 vulnerabilities introduced in 2024 alone, and another
8 already introduced in 2025. This aligns with the timeline of
open-source LLM proliferation and suggests that security debt
accumulates quickly as new models and wrappers are adopted
at scale. The trend reinforces the need for secure-by-default
design and proactive security auditing in the LLM software
lifecycle.

Common Vulnerability Types Figure 2 illustrates the dis-
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Fig. 2: Comparison of Vulnerability Types.

tribution of vulnerability types observed in LPAs and LIFs,
revealing distinct security characteristics between the two
categories.

Among LPAs, the most frequent vulnerability type is Server-
Side Request Forgery (SSRF), with 6 separate advisories.
SSRF issues often emerge in retrieval-augmented generation
(RAG) workflows, where unvalidated user input is passed into
web request handlers for context augmentation. Other high-
frequency patterns include Stored Cross-Site Scripting (XSS)
with 5 advisories, insufficient authorization and authentication
(Auth) with 3 cases and Insecure Direct Object References
(IDOR) with 2 cases. These vulnerabilities reflect typical
weaknesses in web-facing orchestration systems, especially
those that rapidly integrate new LLM workflows without
rigorous input sanitization or access control.

In contrast, LIFs face a very different class of vulnerabili-
ties. The most reported issue type is Denial-of-Service (DoS),
appearing 10 times, followed closely by Remote Code Execu-
tion (RCE) with 7 cases. These typically arise in the form of
unsafe deserialization, malformed input handling, or resource
exhaustion vulnerabilities in native code libraries. Additional
patterns include hash collision attacks, overflow-based issues
(e.g., heap overflow, integer overflow), uninitialized memory
use, and timing side-channel leaks (Others), all of which
reflect the low-level nature and performance-critical focus of
LIF implementations, often written in C or C++. In many
cases, even minor errors in memory or buffer management
can cascade into critical system-level vulnerabilities.

This bifurcation of risk profiles emphasizes the need for
distinct security strategies: LPAs require hardening at the in-
terface and orchestration levels (i.e., input validation, endpoint
restriction, sandboxing), while LIFs demand deeper invest-
ment in systems-level safe coding practices, fuzz testing, and
memory-safe language adoption. It also suggests that generic
LLM security scanners or rule engines may be insufficient
unless tailored to these diverging threat models.

Common Root Causes Table III shows the root causes of
reported vulnerabilities (identified by CWE IDs) from LPAs
and LIFs, reinforcing the unique threat surfaces that each class



TABLE III: Frequency of CWEs in LPAs and LIFs.
‘ CWE Count in

CWE ID LPA | LIF
Access Control
CWE-284 Improper Access Control 1 0
CWE-639 Auth Bypass Through User-Controlled Key 2 0
Command Injection
CWE-78 OS Command Injection | 0 | 1
Data Integrity
CWE-502 Deserialization of Untrusted Data | 0 | 5
Exception Handling
CWE-248 Uncaught Exception | 1 | 0
Input Validation
CWE-79 Cross-site Scripting (XSS) 1 0
CWE-80 Basic XSS 3 0
CWE-87 Improper Neutralization of Alternate 1 0
XSS Syntax
CWE-89 SQL Injection | 0
CWE-918 Server-Side Request Forgery (SSRF) 5 0
Memory Safety
CWE-119 Improper Restriction of Operations 0 2
within the Bounds of a Memory Buffer
CWE-122 Heap-based Buffer Overflow 0 1
CWE-123 Write-what-where Condition 0 1
CWE-125 Out-of-bounds Read 0 3
CWE-195 Signed to Unsigned Conversion Error 0 2
CWE-476 NULL Pointer Dereference 0 1
CWE-680 Integer Overflow to Buffer Overflow 0 1
Path Name/File Access
CWE-22 Path Traversal | 1 | 0
Sensitive Data Exposure
CWE-200 Exposure of Sensitive Information 2 0
to an Unauthorized Actor
URL Redirection
CWE-601 Open Redirect | 1 | 0
Unclassified or Missing CWE | 3 | 15

of system exposes.

Vulnerabilities in LPAs are heavily concentrated around
input validation and access control issues. To be specific,
LPAs account for all reported cases of XSS (CWE-79, CWE-
80), SQL injection (CWE-89), and SSRF (CWE-918), as well
as access control failures (CWE-284 and CWE-639). These
vulnerabilities originate from the application-layer complexity
of LPAs, which often expose HTTP APIs, dynamically handle
user input, and route data through prompt templates or external
plugins, making them susceptible to injection and access flaws.

Differently, vulnerabilities in LIFs are dominated by mem-
ory safety and data deserialization issues. The most frequent
root causes include CWE-502, CWE-119 and CWE-125, along
with related overflow and pointer errors. These weaknesses
are common in low-level systems implemented in C/C++,
such as 11ama . cpp and vLLM, which prioritize performance
and minimal dependencies but often lack memory safety
guarantees.

In terms of severity distribution, LPAs accounted for eight
high severity, seven moderate, four critical, and two low

TABLE 1IV: Vulnerabilities Associated with Multiple CWE
IDs.

Project | CVE ID | Associated CWE IDs
NextChat ‘ CVE-2024-38514 ‘ CWE-79, CWE-918

CVE-2025-53630 | CWE-122, CWE-680
CVE-2025-52566 | CWE-119, CWE-195
CVE-2025-49847 | CWE-119, CWE-195

1lama.cpp

severity advisories. LIFs showed a larger cluster of moderate
severity issues, with thirteen moderate, ten high, and four
critical cases, along with two low severity reports. This dis-
tribution reinforces the need for more rigorous hardening in
LIFs, especially at the systems level where low-level flaws
may have far-reaching impact.

Unclassified or Missing CWE We further analyzed the 15
out of 29 LIF vulnerabilities without identified CWE IDs, and
discovered several common themes stemming from emerging
architectural patterns in LIFs, as shown below:

o Abuse of LLM-specific logic such as prefix caching, guided
decoding, prompt chunk, introduce new classes of DoS,
timing side channels, and data leakage tied specifically to
LLM usage patterns, not traditional program logic.

o Improper validation or parsing of complex inputs such
as malformed regex, invalid multimodal placeholders, and
malicious JSON schemas, often manifest in crashes, DoS,
or unpredictable model behavior, which are specific to LLM
pipelines rather than web or service code.

o Unsafe memory operations or deserialization such as buffer
overflows, null pointer dereferences, arbitrary address read
and write, though can be mapped to CWESs, remains un-
classified due to lack of fine-grained root cause analysis
in reports or insufficient CWE documentation for LLM
contexts.

Besides, many issues arise from distributed inference setups,
GPU memory sharing, or structured output features. They
don’t map cleanly to traditional CWEs, which were designed
for web and system software, not machine learning and LLM
infrastructure. These unclassified issues reveal that LLM-
related software introduces new security concerns that es-
cape traditional classification schemes. Existing CWEs rarely
account for LLLM-specific control and data flows, inference-
specific resource and state management, as well as distributed,
multi-modal, or prompt-driven execution models. Hence, se-
curity tooling and taxonomies need to evolve to better capture
emerging risks in LLM infrastructure.

Compound Vulnerabilities and Root Causes Table IV lists
four vulnerabilities associated with more than one CWE ID.
These cases often involve compound failure conditions that
span multiple layers of a system. For example, CVE-2024-
38514 in NextChat is linked to both XSS (CWE-79) and
SSRF (CWE-918), suggesting that unsanitized user input
can simultaneously affect client-side rendering and backend
request logic. Such an overlap demonstrates how LPAs can
exhibit multifaceted security exposures from a single point of
failure due to its dynamically generated content and interaction



TABLE V: LLM-Specific Vulnerabilities in LPAs

Project \ CVE/GHSL ID LLM-Related Impact

Root Cause Severity Patched?

anything-llm ‘ GHSL-2025-056 Ollama Token Leak

Missing Authentication Checks High Yes

lobe-chat | CVE-2024-24566

Unauthorized Access to Chat

Missing Authorization Checks Moderate  Yes

ChuanhuChatGPT ‘ CVE-2023-34094  API key leak

Unauthorized configuration file access  High No

with external services.

The 11ama . cpp project contains three vulnerabilities with
dual CWE classifications, including heap overflows (CWE-
122), integer overflows (CWE-680), generic memory and type
errors (CWE-119 and CWE-195). These issues reflect the
complexity and risk of building high-performance inference
engines in low-level languages such as C and C++. In such
environments, minor arithmetic errors or boundary miscalcu-
lations can lead to memory corruption or exploitable behavior,
which are exacerbated by the performance optimizations typ-
ically required for local LLM inference.

Vulnerabilities associated with multiple CWEs are partic-
ularly challenging to detect using static or rule-based tools,
as they do not fit neatly into a single vulnerability category.
Their presence reinforces the need for comprehensive security
auditing practices that consider both surface-level and deep
implementation flaws. For the LLM ecosystem, where appli-
cation logic often includes complex routing, dynamic input
composition, and memory-intensive operations, such com-
pound vulnerabilities highlight the value of integrated security
reviews that span both the application and infrastructure layers.

LLM-Specific Vulnerabilities in LPAs Among the above
reported vulnerabilities, we classify certain issues as “LLM-
specific” based on whether their security consequences directly
affect the functionality of the LLM or compromise the confi-
dentiality or integrity of LLM-related data or behavior. Based
on this criterion, three vulnerabilities were identified as LLM-
specific as shown in Table V. These cases underscore how
traditional security flaws can have LLM-specific consequences
when model components are deeply integrated into application
workflows. The first instance involved token leakage from the
Ollama backend, where weak configuration controls led to
unintended exposure of credentials used in local inference.
The other two vulnerabilities enabled unauthorized access to
user chat sessions and API key leakage, caused by missing or
insufficient access control enforcement across session bound-
aries and configuration files.

Importantly, in all three cases, the LLM-related security
impact was a side effect of conventional weaknesses. This
highlights a critical blind spot: when LLMs are embedded
into applications, even small lapses in control logic or infras-
tructure setup can cascade into high-impact risks involving
sensitive data leakage or LLM misuse.

These findings emphasize the urgent need for a systematic
and layered security approach for LPAs. Guarding against
LLM-specific threats cannot rely solely on traditional web
security practices. Developers must adopt LLM-aware safe-
guards, including secure prompt routing [80], authenticated

model access [81], bounded output control and token manage-
ment policies [82] that explicitly account for model interaction
surfaces. As LLMs become more tightly coupled with user
interfaces and application logic, securing them demands a
defense-in-depth strategy that holistically addresses both the
conventional attack surface and the unique behaviors intro-
duced by generative models.

Dependency-Related Vulnerabilities LIFs exhibited greater
vulnerability to dependency-related risks, with 2 confirmed
cases caused by third-party packages or transitive library
flaws. No such cases were identified in LPAs. The difference
reflects the fact that LIFs rely more heavily on platform-level
and performance-optimized packages, often with bindings to
native libraries. These dependencies may not be automatically
tracked by vulnerability scanners such as GitHub Depend-
abot [83] or OSV-Scanner, leading to long windows of un-
patched risk. Moreover, this finding is concerning, as LIFs
are reused extensively in the LLM stack. A single vulnerable
library in an LIF could cascade downstream across dozens of
LPA projects without detection, making dependency hygiene
in frameworks a critical blind spot.

Unpatched Vulnerabilities and Patch Challenges At the time
of writing, 4 out of the 50 vulnerabilities in our dataset
remained unpatched, leaving them persistently exposed in
public releases. According to GitHub advisories and CVE
records, all four were classified as either high or critical
severity. These vulnerabilities are often tightly coupled with
core architectural components of the affected systems, which
makes remediation especially difficult.

The first unpatched case is an SQL injection (CVE-2025-
27135), resolving the issue requires not just input sanitization
but often a complete restructuring of how queries are built
and executed [20]. If the application dynamically constructs
queries from user input without strict abstraction layers (e.g.,
through raw string interpolation), then fixing the vulnerability
may involve deep changes to the application’s data handling
logic. Moreover, any refactoring must preserve existing func-
tionality across varied use cases, which increases the burden
and risk of introducing regressions.

The second unpatched vulnerability combines sensitive data
exposure, insecure endpoint access and broken access control
(GHSL-2025-056). Mitigating this issue requires not only
securing individual API endpoints but also auditing authentica-
tion mechanisms, permission checks, and data filtering logic.
Projects that were not initially designed with strict access
controls may lack a centralized security enforcement point,
indicating that the problem is distributed across multiple mod-
ules [84]. This fragmentation complicates both detection and



remediation, which may require architectural redesign [85].

The third unpatched case is an unauthenticated DoS at-
tack (CVE-2024-22422), which also presents a difficult fix,
especially if it exploits resource exhaustion in unauthenticated
request flows. Applying rate limits, request validation, or
authentication gating can reduce the risk, but such changes
must be implemented with care to avoid degrading perfor-
mance or blocking legitimate users [86]. For LLM-powered
systems, where requests can involve expensive operations (e.g.,
embedding generation or model inference), even seemingly
harmless inputs can lead to costly workloads [87]. This makes
DoS mitigation a balance between resilience and usability.

The last unpatched case (CVE-2025-30165) has detailed
documentation from the project maintainer explicitly stated
that a patch was unnecessary [88]. The rationale provided was
that the vulnerability could only be triggered in an uncommon
deployment pattern or in a retired version that is no longer used
by default. This highlights the subjectivity involved in patch
triage decisions, especially in community-led or volunteer-
maintained open source projects [89]. However, from a se-
curity consumer perspective, even low-severity vulnerabilities
should ideally be mitigated, especially when the LPA may be
deployed in unexpected or uncontrolled environments.

In summary, these unpatched issues exemplify the types of
vulnerabilities that are not only high-impact but also high-
friction to fix, often requiring structural changes, performance
trade-offs, or complex validation workflows.

Reporting Quality The advisories for both LPAs and LIFs
in our dataset were generally well documented, though dif-
ferences in reporting style and completeness were evident.
86% LPA vulnerabilities included CWE mappings, while 52%
LIF advisories lacked this classification. Most LPA and LIF
advisories are consistent with structured CVE standards and
often contained technical details such as exploit steps or buffer
boundaries, while some omit clear mitigation steps or relying
on vague severity descriptors such as “high” or “moderate”
without further context.

V. CoOMMON AND UNIQUE RISKS IN LPAs AND LIFs

This section analyzes well-established security flaws in
LPAs and LIFs that mirror those long observed in traditional
0SS, alongside emerging vulnerability patterns that are unique
to the LLM ecosystem.

A. Vulnerability Types and Patch Delays

In traditional OSS projects hosted on GitHub, patch delays
tend to be much shorter, averaging 40.46 days, with over
80% of CVE-branch pairs eventually patched [90]. Our study
shows that LPAs and LIFs experience considerably longer
delays, averaging 234 days for LPAs and 504 days for LIFs,
with 8% of vulnerabilities still unpatched. Meanwhile, large
OSS projects such as Chromium and OpenSSL demonstrate
even longer timelines, requiring about 2 years and 7 years on
average, respectively, to deploy fixes [79].

The vulnerability types observed in LPAs and LIFs largely
overlap with those found in traditional OSS projects [91],

including CWE-79 and CWE-22. This suggests that LPAs and
LIFs inherit many of the foundational risks seen in traditional
OSS. Meanwhile, LPAs are more prone to integration-level
vulnerabilities, such as CWE-918. LIFs exhibit more low-level
memory vulnerabilities, tied to performance-optimized native
code (e.g., C/C++). Hence, LLM-related software does not
introduce entirely new vulnerability classes, however, they do
amplify existing risks and demand tailored defenses at both
application and infrastructure levels.

B. Emerging Patterns in LLM Ecosystem

From the 50 real-world vulnerabilities from LPAs and
LIFs, we observed recurring patterns that reveal both software
weaknesses amplified by the LLM context and risks that arise
uniquely from it.

Emergence of Model-Centric Exploits One of the most dis-
tinctive patterns we observed from real vulnerabilities in LIFs
is the rise of model-centric exploits. Unlike traditional OSS,
where vulnerabilities often stem from API misuse or network
exposure, LIFs expose new risks through the way they parse,
load, and execute model files (e.g., GGUF, safetensors, or
custom weight formats). Attackers can craft malicious model
files that exploit weaknesses in parsing routines, leading to
heap overflows, out-of-bounds reads, or arbitrary code execu-
tion (observed in 1lama.cpp and vLLM). This turns what
should be a trusted model artifact into a powerful attack vector.
This is a novel attack surface because traditional OSS projects
without LLM (or machine learning) components typically do
not treat model weights or vocabulary files as untrusted input.
The challenge is compounded by the fact that many LIFs
are designed to load community-contributed or downloaded
models, significantly expanding the attack surface. Our find-
ings highlight that the simple act of running inference on a
compromised model can yield outcomes ranging from DoS
to RCE, underscoring how tightly bound LIFs are to model
format integrity and the urgent need for hardened parsing
logic.

General Weaknesses With LLM-Specific Consequences A
second recurring pattern in our dataset is that traditional
security flaws manifest in LLM-specific ways, amplifying
their consequences. Many vulnerabilities in LPAs and LIFs
share root causes with common OSS flaws, such as missing
authentication and insufficient access controls. However, in
LLM-powered context, these flaws cascade into LLM-specific
risks. For example, a missing authorization check (observed in
lobe-chat and onyx) that might otherwise expose a con-
figuration file in a web app can, in an LPA, expose API keys
that grant unrestricted access to an LLM backend, enabling at-
tackers to exfiltrate sensitive user prompts or execute arbitrary
model queries. Similarly, a DoS vulnerability triggered by
malformed input can not only crash a worker but also interrupt
ongoing inference sessions across multiple users, leading to
more disruptive outcomes than in non-LLM systems. These
cases show that while the underlying weakness was not new,
the presence of an LLM at the center of the application



dramatically raised the stakes, turning otherwise ordinary flaws
into high-severity risks that directly compromise model-driven
functionality. This reinforces the idea that LPAs inherit old
problems but magnify them in ways that security teams may
not anticipate.

VI. IMPLICATIONS

Our analysis of security advisories in LPAs and LIFs reveals
a maturing but uneven security landscape. While a growing
number of projects are adopting formal reporting practices
through GitHub’s security tab, the data also expose persistent
gaps in patch timeliness, inconsistent documentation, and the
absence of preventive mechanisms. These findings carry sev-
eral important implications for the open-source LLM software
community and suggest opportunities for improvements.

Proactive Vulnerability Detection and Prioritization One of
the clearest takeaways from our study is the long time-to-
fix window observed in both LPAs and LIFs, with average
delays exceeding 200 days and some serious vulnerabilities
remaining unpatched for years. Although reactive disclosure
workflows are beginning to take hold, they remain insufficient
in isolation. Given the security-critical nature of many LLM
deployments ranging from enterprise chat systems to on-device
assistants [7], [12], [3], [92], projects must adopt proactive
vulnerability detection.

To support these efforts, there is a need for clearer triage
processes and tagging standards. Vulnerabilities that span
multiple layers (e.g., orchestration logic, model behavior,
and system-level execution) require consistent labeling and
categorization to prioritize remediation. Our study shows that
some vulnerabilities remained unpatched not because they
were undetected, but because their risk was downplayed or
a huge effort is required from maintenance team. Besides,
standardizing how LLM-specific risks are reported and inter-
preted will enable better prioritization and more responsible
downstream reuse.

CI for Security Enforcement We did not observe any security-
focused CI pipelining (e.g., GitHub Actions) from our stud-
ied LPAs and LIFs, suggesting that LLM-related projects
lack tight integration between security mechanisms and CI
workflows. Even among popular repositories, patches were
often released manually and months after the initial issue was
disclosed [93]. This delay is partially due to fragmented de-
velopment processes and the absence of security enforcement
gates in building pipelines [94].

To reduce exposure windows, projects should incorporate
security checks directly into CI workflows. For example, input
validation logic should be tested against prompt injection and
command injection patterns as part of test suites. Dependency
updates should trigger security scans, and results from CVE
databases or GitHub advisories should be surfaced automati-
cally during pull requests. Automating such checks can dra-
matically reduce remediation delays and prevent regressions.

Toward A Systematic Approach for the LLM Software Stack
Our study calls attention to the need for a holistic and layered

security strategy that spans the full LLM ecosystem. LPAs
sit atop an increasingly complex stack that includes LIFs,
system libraries, model files, and orchestration agents [95],
[96]. Our study shows that vulnerabilities can arise at any
layer through insecure API access, unsafe user/model behavior
or flawed low-level memory handling. Hence, security efforts
must move beyond individual applications and address the
stack as a whole.

We advocate for the development of LLM-stack-aware secu-
rity analysis tools that trace vulnerabilities across abstraction
boundaries. For example, if an LPA uses an LIF vulnerable
to command injection, that risk should be surfaced in the
LPA’s own advisory or dependency dashboard. Similarly, a
centralized platform for cross-project vulnerability tracking
could help detect when the same issue recurs across differ-
ent agent frameworks or inference backends. Moreover, the
growing reuse of patterns, such as RAG [97] or plug-in style
agents [98], means that new vulnerabilities may propagate
rapidly unless mitigated systematically. Establishing shared se-
curity guidelines, reusable defense patterns, and standardized
audit frameworks will be key to protecting the broader LLM
ecosystem.

VII. THREATS TO VALIDITY

Construct Validity concerns whether the patterns we analyzed
are accurately represented in our data, for example, classifi-
cation of vulnerability types for LPAs and LIFs. To mitigate
this, we manually examined documentation and metadata on
our selected LPAs and LIFs with their GitHub security advi-
sories, using predefined criteria for labeling and categorizing
issues. While manual analysis enabled fine-grained inspection,
it also introduces subjectivity, especially in ambiguous or
undocumented cases. We mitigated this risk through consistent
labeling guidelines and cross-validation across multiple data
sources by multiple experts, but some interpretation bias may
remain. In addition, we note the possibility that the four
unpatched vulnerabilities may have been quietly fixed without
update or disclosure [99], [100], which could affect the validity
of our study.

Internal Validity refers to whether our conclusions about
patterns and relations are sound and not confounded by uncon-
trolled factors. Our identification of vulnerabilities and patterns
was based on the recurring presence of these issues across
diverse repositories. However, since our data was filtered
through manual inspection, errors in classification or under-
representation of niche project types may affect the strength of
our inferences. Moreover, in identifying common patterns, we
based our findings on observable patterns in GitHub security
advisory discussions and project behaviors. To reduce bias,
we applied a consistent classification scheme and compared
repeated issues across projects. Finally, not all of the observed
patterns and relations can be definitively confirmed without
direct evidence from maintainers.

External Validity addresses how well our findings generalize
beyond our sampled dataset. The 89 LPAs were selected



using GitHub search API, which may miss repositories using
different naming conventions on topics. To mitigate this, we
first collected representative keywords commonly used in LPA
GitHub repositories and then used a custom scraper to improve
the coverage and completeness. However, our dataset focuses
on open-source LPAs and may not capture the features of
commercial LPAs. Similarly, the selection of LIFs and GitHub
security advisories we studied are primarily open-source and
may not reflect the complexity or optimization of closed-
source apps and frameworks. Even though our findings are
highly relevant to open-source LLM development ecosystem,
generalization to all LPA and LIF development should be made
with caution.

VIII. CONCLUSIONS

Our study presents a comparison analysis of publicly dis-
closed security vulnerabilities across a representative set of
open-source LPAs and LIFs. By mining and analyzing GitHub
Security Advisories, we provide the first empirical snapshot of
real-world LLM software security as reflected in developer-
facing disclosures.

Our findings reveal distinct vulnerability profiles for LPAs
and LIFs: LPAs tend to suffer from web-facing and input
validation issues such as SSRF, XSS, and access control flaws,
while LIFs are more prone to memory safety vulnerabilities
and deserialization risks common in low-level systems code.
We also identify unique security risks stemming from LPAs
and LIFs, including new attack surfaces formed by LIFs
and models, as well as LLM-specific consequences arising
from general security weaknesses. In addition, we observe
substantial variability in patching practices, with some high-
severity vulnerabilities remaining unpatched for extended pe-
riods due to architectural entanglement or limited maintenance
resources. Notably, several LPA vulnerabilities involved LLMs
only indirectly, highlighting the complexity of securing entire
software stacks that integrate LLMs.

The persistence and nature of these security issues under-
score the need for proactive vulnerability detection, consis-
tent triage practices, and better coordination across the LLM
software ecosystem. Moving forward, we advocate for tighter
integration of security scanning and policy enforcement into
LLM-related CI/CD pipelines, along with a more systematic
approach to securing not just LPA interfaces but also the
underlying inference frameworks on which they depend. Our
dataset and analysis aim to serve as a foundation for more
targeted tools, benchmarks, and defense mechanisms tailored
to the emerging LLM software landscape.
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